Talking about IBM Watson (again)

As I mentioned in May, I was lucky to be able to go to Thinking Digital this year and talk about what we’re doing with Watson.

I’ve just noticed that they’ve made a video of my talk available. I haven’t dared watch it (does anyone like watching videos of themselves?), but I figured I should share it anyway!

Thinking Digital 2014

This week I went up to Newcastle for Thinking Digital.

It was the seventh Thinking Digital, but my first.

I’d seen a bunch of references to it being the UK’s answer to TED, the tickets aren’t cheap, videos from previous years look slick and professional, it’s held in The Sage which is a hugely impressive venue, they manage to get a great line-up of speakers, and the logistics in the run-up to the event were more organised than any event I’ve been to before.

So… I was expecting a cool and geeky, if faceless, serious, formal, and intimidating event.

I’d read it completely wrong. It’s absolutely a professionally run event. And there was no shortage of cool geekiness. But, more than that, the organizer, Herb Kim, has created a real sense of community in it. There’s a feeling of almost familial warmth amongst attendees who come year after year after year.

And they do it without being too cliquey. Everyone I spoke to was very friendly and welcoming, which made the few days a lot easier for an introvert like me. A few days being surrounded by and trying to talk to and socialise with several hundred smart brilliant people is the kind of thing I normally find hugely draining and more than a little daunting. But the crowd at TDC make it easier than most.

They value their time there, too. More than one person told me they’d paid for their own ticket and expenses to attend. I’m used to corporate-run conferences where everyone is paid for by their employer, or barcamps where people moan about being asked for a five pound deposit, so this surprised me.

The talks made for a fascinating and thought-provoking couple of days. I can’t do them justice here (when videos of the talks are available I’ll embed/link them here instead) but I want to give an idea of what the programme was like.

Jeni TennisonOpen Data Institute
Talked about the potential impact of open data on society, giving examples of how open data could be used to inform and widen access to debate.

Maik MaurerSpritz
Demonstrated their speed-reading technology – streaming one word at a time in a fixed place, for fast reading on mobile and wearable devices.

Gerard GrechTech City
Talked about the role of Tech City as a feedback loop between Government and the tech community.

Meri WilliamsChromeRose
Talked about the lessons that people managers could learn from artificial intelligence in how to inspire, motivate, and enable geeks to achieve great things.

Aral Balkanindie Phone
Gave an impassioned and stirring talk entitled “Free is a Lie” about the conflict between advertising-led business models, and user’s privacy and other interests.

David Griffithsfoam
Talked about using his background in the video game industry to combine crowd-sourcing and gaming to perform impressive citizen science projects.

Chi OnwurahMP for Newcastle Central
Talked about the parallels between technology and politics as driving forces for change, and the aims of the current Digital Government Review.

Mariana MazzucatoUniversity of Sussex
Argued that the image of the private sector as entrepreneurial and public sector as meddling and restrictive is an unhelpful myth and made the case for a bolder, entrepreneurial state.

Erin McKeanWordnik
Talked about the limitations of search as a model for accessing data and the need for discovery engines to find what you don’t know you want.

Blaise Aguera y ArcasGoogle
Described the history of machine intelligence and his predictions about what the future of machine intelligence might look like.

Carl LedbetterMicrosoft
Outlined the history and evolution of digital entertainment, and described the process that went into the design of the XBox One.

Jennifer GardyBC Centre for Disease Control
Described our progress in increasing our understanding of the human genome, and where it’s complexity lies.

Peter Gregson – Cellist
Gave a representation of the genome work that Jennifer had described. Instead of a data visualisation, it was a sonification. Using a cello.

Sean CarassoFalling Whistles
Told an inspiring story of how he came to learn about the terrible things happening in Congo, and how he went about trying to bring peace.

Conrad BodmanThe Barbican
Argued for recognition of the impact of digital tech on the arts, and described his projects to exhibit and showcase video games, animation, and digital effects.

Mark DearnleyHMRC
Described the challenges and need for technology in what HMRC do, and their digital ambition for the future.

Xavier De KestellerFoster + Partners
Talked about an amazing project to build a base on the moon, using autonomous robots with 3D printing heads to print a building out of moon dust.

Susan MulcahyImperial College London
Gave an energetic performance to describe the role of the red blood cell, and the science behind understanding brain injury.

Carlos UlloaHelloEnjoy
Showed what was possible using WebGL, bringing native 3D gaming to the browser without the need for plugins.

Jonathan O’HalloranQuantuMD
Described his work to create a mobile genetic-testing device, and the potential that real-time epidemiology from a mobile device could bring.

Blaise Aguera y ArcasGoogle
Talked about changes needed in society when more jobs are replaced by technology, and his observations about changes in gender dynamics.

Steve MouldBBC
Gave an entertaining talk about how he discovered, and tried to understand the science behind, the bead chain fountain.

Tom ScottUs Vs Th3m
Ended the conference with a fantastic performance showing what the impact of technology might be like in 2030.

Dale LaneIBM
And I did a Watson talk. I really didn’t want it to seem like a sales pitch, so I tried to put it in a bigger context of being a step forwards in changing how we use computers. I talked about why I work on Watson, what motivates and inspires me about it, and why I think what we’re doing is difficult but hopefully valuable. And I walked through a short demo to explain the value I see in where we are even now. Annoying technical issues (Keynote + clicker + multiple screens = fail) aside, it went okay. It was a lot to try and fit into 20 minutes, so I talked fast. :-)


It was a fantastic event, and one I’d wholeheartedly recommend.

If you can get to a future Thinking Digital, you absolutely should.

It’s one of the most thought-provoking and interesting couple of days I’ve had in a long time.


Full-diclosure: As a speaker, I didn’t have to pay for a ticket to attend this event. My travel and accommodation costs were paid for by IBM.

Text analytics in BlueMix using UIMA

In this post, I want to explain how to create a text analytics application in BlueMix using UIMA, and share sample code to show how to get started.

First, some background if you’re unfamiliar with the jargon.

What is UIMA?

UIMA (Unstructured Information Management Architecture) is an Apache framework for building analytics applications for unstructured information and the OASIS standard for content analytics.

I’ve written about it before, having used it on a few projects when I was in ETS, and on other side projects since such as building a conversational interface to web pages.

It’s perhaps better known for providing the architecture for the question answering system IBM Watson.

What is BlueMix?

BlueMix is IBM’s new Platform-as-a-Service (PaaS) offering, built on top of Cloud Foundry to provide a cloud development platform.

It’s in open beta at the moment, so you can sign up and have a play.

I’ve never used BlueMix before, or Cloud Foundry for that matter, so this was a chance for me to write my first app for it.

A UIMA “Hello World” for BlueMix

I’ve written a small sample to show how UIMA and BlueMix can work together. It provides a REST API that you can submit text to, and get back a JSON response with some attributes found in the text (long words, capitalised words, and strings that look like email addresses).

The “analytics” that the app is doing is trivial at best, but this is just a Hello World. For now my aim isn’t to produce a useful analytics solution, but to walk through the configuration needed to define a UIMA analytics pipeline, wrap it in a REST API using Wink, and deploy it as a BlueMix application.

When I get a chance, I’ll write a follow-up post on making something more useful.

You can try out the sample on BlueMix as it’s deployed to

The source is on GitHub at

In the rest of this post, I’ll walk through some of the implementation details.

Runtimes and services

Creating an application in BlueMix is already well documented so I won’t reiterate those steps, other than to say that as Apache UIMA is a Java SDK and framework, I use the Liberty for Java runtime.

I’m not using any of the services in this simple sample.


The app is bundled up in a war file, which is what we deploy. This is specified in manifest.yml.


The war file is built by an ant task which has to include the UIMA jar in the classpath, and copy my UIMA descriptor XML files into the war.

I’m developing in eclipse, so I set up an ant builder to run the build, and configured the project to do it automatically.

I’m deploying from eclipse, too, using the Cloud Foundry plugins for eclipse.

XML descriptors

The type system is defined in an XML descriptor file and specifies the different annotations that can be created by this pipeline, and the attributes that they have.

Running JCasGen in eclipse on that descriptor generates Java classes representing those types.

The pipeline is also defined in XML descriptors: one overall aggregate descriptor which imports three primitive descriptors for each of the three annotators in my sample pipeline : one to find email addresses, one to find capitalised words and one to find long words.

Note that the imports in the aggregate descriptor need to be relative so that they keep working once you deploy to BlueMix.

These XML descriptor files are all added to the war file by being included in the build.xml with a fileset include.


Each of the primitive descriptor files specifies the fully qualified class name for the Java implementation of the annotator.

There are three annotators in this sample. (XML files with names starting “primitiveAeDescriptor”).

Each one is implemented by a Java class that extends JCasAnnotator_ImplBase.

Each uses a regular expression to find things to annotate in the text. This isn’t intended to be an indication that this is how things should be done, just that it makes for a simple and stateless demonstration without any additional dependencies.

The simplest is the regex used to find capitalised words in WordCaseAnnotator and the most complex is the ridiculously painful one used to find email addresses in EmailAnnotator.

Note that the regexes are prepared in the annotator initializer, and reused for each new CAS to process, to improve performance.

UIMA pipeline

The UIMA pipeline is defined in a single Java class.

It finds the XML descriptor for the pipeline by looking in the location where BlueMix will unpack the war.

It creates a CAS pool to make it easier to handle multiple concurrent requests, and avoid the overhead of creating a CAS for every request.

Once the pipeline is initialised, it is ready to handle incoming analysis requests.

Once the CAS has passed through the pipeline, the annotations are immediately copied out of the CAS into a POJO, so that the CAS can be returned to the pool.


The war file deployed to BlueMix contains a web.xml which specifies the servlet that implements the REST API.

I’m using Wink to implement the API. The servlet definition in the web.xml specifies where to find the list of API endpoints and the URL where the API should be.

The list of API endpoints is a list of classes that Wink uses. There is only one API endpoint, so only one class listed.

The API implementation is a very thin wrapper around the Pipeline class.

Everything is defined using annotations, and Wink handles turning the response into a JSON payload.

That’s it

I think that’s pretty much it.

I’ve added a simple front-end webpage, with a script to submit API requests for people who don’t want to do it with something like curl.

It’s live at

Like I said, it’s very simple. The Java itself isn’t particularly complex. My reason for sharing it was to provide a boilerplate config for defining a UIMA analytics pipeline, wrapping it in a REST API, and deploying it to BlueMix.

Once you’ve got that working, you can do text analytics in BlueMix as complex as whatever you can dream up for your annotators.

When I get time, I’ll write a follow-up post sharing what that could look like.

Why am I still at IBM?

Ten years ago.

6 August 2003.

I was a recent University graduate, arriving at IBM’s R&D site in Hursley for the first time. I remember arriving in Reception.

Reception – the view that greeted me when I arrived

Ten years.

It was a Wednesday.

I’m still at the same company. I’m still at the same site. I still do the same drive to work, more or less.

For a *decade*.

How did that happen?

It was never The Plan. The Plan (as cynical as it sounds in hindsight) was that I’d stay for two or three years. I figured that would be long enough to get experience, and then I’d leave to work at a small nimble start-up which was where all the “cool” work was.

The Plan never happened. A few years passed, and then another few… I kept saying that I’d leave “later” and before I knew it a ten year milestone has kind of snuck up on me.

I think I’m more surprised than anyone. I’ve never been at any place this long. I was at Uni for five years. The longest I was at any school was four years.

It’s a serious commitment, and one I never realised that I had made. I’ve not even been married for as long as I’ve been with IBM.

So why? Why am I still here?

I live here.

It’s been varied

I’ve spent ten years working for the same company, but I’ve had several jobs in this time.

I’ve been a software developer. I’ve been a test engineer. I’ve been a service engineer, fixing problems with customer systems. I’ve worked as a consultant, advising clients about technology through presentations and running workshops. I’ve done services work building prototypes and first-of-a-kind pilot systems for clients.

I’ve written code to run on tiny in-car embedded systems and apps that ran on mobile phones. I’ve worked as a System z Mainframe developer. I’ve written front-end UI code, and I’ve written heavy-duty server jobs that took hours to run (even when they weren’t supposed to).

IBM Hursley

It’s still challenging

I’ve worked on middleware technology, getting some of the biggest computer systems in the world to communicate with each other, reliably, securely and at scale. I’ve used analytics to get insight from massive amounts of data. I’ve worked on large-scale fingerprint and voiceprint systems. I’ve used natural language processing to build systems that attempt to interpret unstructured text. I’ve used machine learning to create systems that can be trained to perform work.

I’m still learning new stuff and still regularly have to figure out how to do stuff that I have no idea how to at the start.

Some views of the grounds around the office

I get to do more than just a “day job”

I do random stuff outside the day job. I’ve helped organise week long schools events to teach kids about science and technology. I’ve mentored teams of University students on summer-long residential innovation projects. I’ve prepared and delivered training courses to school kids, school teachers and charity leaders. I’ve written an academic paper and presented it at a peer-reviewed research conference. And lots more.

I’m a developer, but that doesn’t mean I’ve spent ten years churning out code 40 hours a week. There’s always something new and different.

Hursley House – where I normally work when I have customers visiting

I work on stuff that matters

Tim O’Reilly has been talking for years about the importance of working on stuff that matters.

“Work on something that matters to you more than money”

If you’ve not heard any of his talks around this, I’d recommend having a look. There are lots of examples of his slides, talks, blog posts and interviews around.

I can’t do his message justice here, but I just want to say that he describes a big part of how I feel very well. I want to work on stuff that I can be proud of. Not just technically proud of, although that’s important too. But the pride of doing something that will make a difference.

Working for a massive company gives me chances to do that. I’ve worked on projects for governments, and police forces, and Universities. I’ve done work that I can be proud of.

For the last couple of years, I’ve been working on Watson. It’s a very cool collection of technologies, and watching the demo of it competing on a US game show has a geeky thrill that doesn’t get old. But that’s not the most exciting bit. Watson could be a turning point. This could change how we do computing. If you look at what we’re trying to do with Watson in medicine, we’re trying to transform how we deliver healthcare. This stuff matters. It’s exciting to be a part of.

These are the views that surround the site

I like the lifestyle

Hursley is a campus-style site. It’s miles from the nearest town, and surrounded by fields and farms. It’s quiet and has loads of green open space.

My commute is a ten minute drive through a village and fields.

I don’t have to wear a suit, and I don’t stand out coming to work in a hoodie and combat trousers. Flexitime has been the norm for most of my ten years, and I am free to plan a work day that suits me. When I need to be out of the office by 3pm to get the kids from school, I can.

My kids are at a school half-way between home and the office, so I can do the school run on the way to work. As the school is only five minutes from work, I often nip out to see them do something in an assembly, or have lunch with them.

This is a nice aspect of the school – that parents are welcome to join their kids for lunch, and have a school dinner with them and their friends in the school canteen. But still… it’s pretty cool, and if I didn’t work just up the road from them, I wouldn’t be able to do it.

Once a month, I bring them to work in the morning before school starts for a cooked breakfast in the Clubhouse with the rest of my team.

All of this and a lot more tiny aspects like it add up to a lifestyle that I like.

More train tickets
Some of my train tickets from the last few years

I get to see the world

I enjoy travelling. I love seeing new places.

But I’d hate a job where I lived out of a suitcase and never saw the kids.

I’ve managed to find a nice balance. I travel, but usually on short trips and not too often.

In 2006, I worked at IBM’s La Gaude site near Nice. In 2007, Singapore, Malaysia, Philippines and Paris. In 2008, I worked in Copenhagen, Paris and Hamburg. In 2009, I worked in Munich many times, and Rotterdam. In 2010, Stockholm. In 2011, Tel Aviv and Haifa in Israel, Austin in Texas, Paris and Berlin. Last year, I worked in Zurich and Littleton, Massachusetts.

This year, I’ve been in Rio de Janeiro and Littleton again, and it looks like I’ll be in Lisbon in December.

Plus working around the UK. It’s less glamorous, but it’s still interesting to go to new places. I’ve worked in loads of places, like Edinburgh, York, Swansea, Malvern, Warwick, Portsmouth, Cheshire, Northampton, Guildford… I occasionally have to work in London, although I tend to moan about it. And I spent a few months working in Farnborough. I think I moaned about that, too. :-)

Travelling is a great opportunity. I couldn’t afford to have been to all the places that IBM has sent me if I had to pay for it myself.

The officemy deskCarnage
My office today (left), compared with some of the other desks I’ve had around Hursley

The pay is amazing!

Hahahahaha… no.

See above.

Grace at my desk at a family fun day at work in 2008

Will I be here for another ten years?

I’m trying to explain why I’m happy and enjoying what I do. I’m not saying I couldn’t get exactly the same or better somewhere else. Because I don’t know. Other than a year I spent as an intern at Motorola I’ve never worked anywhere else. For all I know, the grass might be greener somewhere.

Will I still be here in another ten years? I dunno… I do worry if that’s unambitious. I wonder if I should try somewhere else. I wonder if only ever working for one company is giving me an institutionalised and insular view of the world.

I keep getting emails from LinkedIn about all the people I know who have new jobs. There are a bunch of people I used to work with at IBM who have not only left to work at other companies, but have since left those companies and gone on to something even newer. While I’m still here.

Am I destined to be one of those IBMers who works at Hursley forever? That’s a scary thought.

For now, I’m enjoying what I do, so that’s good enough for me.

Happy 10th anniversary to me.

W4A : Accessibility of the web

This is the last of four posts sharing some of the things I saw while at the International World Wide Web Conference for w4a.

Several presentations looked at how accessible the web is.

Web Accessibility Snapshot

In 2006, an audit was performed by Nomensa for the United Nations. They reviewed 100 popular websites for conformance to accessibility guidelines.

The results weren’t positive: 97% of sites didn’t meet WCAG level 1.

Obviously, conformance to guidelines doesn’t mean a site is accessible, but it’s an important factor. It’s not sufficient, but it is required. Conformance to guidelines can’t prove that a website is accessible, however there are some guidelines that we can be certain would break accessibility if not followed. So they are at least a useful starting point.

However, 2006 is a long time ago now, and the Internet has changed a lot since. One project, from colleagues of mine at IBM, is creating a more up to date picture of the state of the web. They analysed a thousand of the most popular websites (according to Alexa) as well as a random sampling of a thousand other sites.

(Interestingly, they found no statistically significant difference between conformance in the most popular websites and the randomly selected ones).

Their intention is to perform this regularly, creating a Web Accessibility Snapshot, with regular updates on the status of accessibility of the web. It looks like it could become a valuable source of information.

Assessing accessibility

There was a lot of discussion about how to assess accessibility.

One paper argued there is an over-reliance on automated tools and a lack of awareness of the negative effects of this. They demonstrated a manual review of websites, comparing results with output from six popular tools. Their results showed how few accessibility problems automated tools discover.

Accurately assessing a website against accessibility guidelines doesn’t necessarily mean that you can prove a site is accessible or easy to use.

Some research presented suggests guidelines only cover a little over half of problems encountered by users. Usability studies suggest some websites that don’t meet guidelines may be easier to use than websites that do, as users may have effective coping strategies for (technically) non-compliant sites. This suggests we need a better way of assessing accessibility.

A better approach might be to observe users interact with a website and assess based on their experiences. One tool presented, WebTactics, showed an automated approach to assessing accessibility by observing a user and identifying behaviours they employ.

Another paper detailed how to add accessibility monitoring to a live website by adding additional JavaScript that captures and evaluates mouse clicks and button presses client-side before submitting them to a server for processing. Instead of requiring the user to perform predefined, and perhaps artificial, tasks, they hope to be able to discover tasks implicitly – that common tasks will emerge from the low-level actions that they collect.

Accessibility training

Given that most websites have some sort of accessibility problems, there was some talk about how this could be improved.

One project presented showed training that has been developed to raise awareness of how people with disabilities access the web, and the implications of the accessibility guidelines. It’s a practical course including hands-on assignments, and looks like it could be the sort of thing that could help web developers make a real difference.

Social Accessibility

Another project is using crowd-sourcing to improve web sites that already exist. Social Accessibility, another IBM project, enables volunteers to make web pages more accessible to the visually impaired.

It provides a mechanism for accessibility problems to be gathered directly from visually impaired users. Volunteers are then notified, and can respond using a tool that allows them to externally modify web pages to make them more accessible. It lets them publish metadata associated with the original web page. This can be applied to the web page for all visually impaired users who visit it in future using this tool, so that many users can benefit from the improvement.


Finally, a project called cloud4all is developing a roaming profile that stores your preferences in a way that multiple services can access. The focus is on accessibility – a user can store their accessibility needs in one place, and then interfaces can use this to adapt for them.

Dyslexia at W4A

This is the third of four posts sharing some of the things I saw while at the International World Wide Web Conference for w4a.

There were a few sessions presenting work done to improve understanding of how to better support people with dyslexia.

One interesting study investigated the effect of font size and line spacing on the readibility of wikipedia articles.

This was assessed in a variety of ways, some of which were based on the reader’s opinions, while others were based on measurements made of the reader during reading and of their understanding of the content after. The underlying question (can we make Wikipedia easier to read for dyslexics?) was compelling. It was also interesting to see this performed not on abstract passages of text, but in the context of using an actual website.

Accessibility isn’t just about the presentation but also the content itself. Another study looked at strategies for simplifying text that could make web pages more readable for dyslexic readers.

It compared the effectiveness of two strategies: firstly, providing synonyms on demand – giving a reader a way to be able to request an alternative for any word. The second was providing synonyms automatically – with complex words automatically substituted for simpler equivalents. Again, this was assessed in several ways, such as the speed of reading, the reader’s comprehension, on the reader’s opinion of easiness, on the effort it took (e.g. interpreting facial expression, etc.), on fixation duration measured using eye tracking, and so on.

On a more practical note, there were also tools presented that are being created to help support people with dyslexia.

Firefixia is a Firefox toolbar extension being created by colleagues of mine in IBM. It provides options for users to customise the web page they are looking at, offering modifications that have been demonstrated to make it easier for dyslexic users.

Dyseggxia is an impressive looking iPad game that aims to support children with dyslexia through fun word games.

W4A : Future of screen readers

This is the second of four posts sharing some of the things I saw while at the International World Wide Web Conference for w4a.

Several of the projects that I saw showed glimpses of a possible future for screen readers.

I’ve written about screen readers before, and some of the challenges with using them.

Interactive SIGHT

One project interpreted pictures of charts or graphs and created a textual summary of the information shown in them.

I’m still amazed at this. It takes a picture of a graph, not the original raw data, and generates sensible summaries of what it shows.

For example, given this image:

It can generate:

This graphic is about United States. The graphic shows that United States at 35 thousand dollars is the third highest with respect to the dollar value of gross domestic product per capita 2001 among the countries listed. Luxembourg at 44.2 thousand dollars is the highest


The dollar value of gross domestic product per capita 2001 is 25 thousand dollars for Britain, which has the lowest dollar value of product per capita 2001. United States has 1.4 times more product per capita 2001 than Britain. The difference between the dollar value of gross domestic product per capita 2001 for United States and that for Britain is 10 thousand dollars.

The original version was able to process bar graphs, and was presented to W4A in 2010. What I saw was an extension that added support for line graphs.

Their focus is on the sort of graphics found in newspapers and magazines – informational, rather than scientific graphs. They want to be able to generate a high level summary, rather than a list of plot points that require the user to build a mental model in order to interpret.

For example:

The image shows a line graph. The line graph presents the number of Walmmart’s sales of leather jackets. The line graph shows a trend that changes. The changing trend consists of a rising trend from 1997 to 1999 followed by a falling trend through 2006. The first segment is the rising trend. The rising trend is steep. The rising trend has a starting value of 1890. The rising trend has an ending value of 36840. The second segment is the falling trend. The falling trend has a starting value of 36840. The falling trend has an ending value of 12606.

The image shows a line graph. The line graph presents the number of people who started smoking under the age of 18 in the US. The line graph shows a trend that changes. The changing trend consists of a rising trend from 1962 to 1966 followed by a falling trend through 1980. The first segment is the rising trend. The rising trend is steep. The second segment is the falling trend.

It’s able to interpret an image and recognise trends, recognise how noisy or smooth it is, recognise if the trend changes, and more. Impressive.

Interpreting data in tables

Another project demonstrated restructuring data tables in web pages to make them easier to explore with a screenreader.

They have an interesting approach of analysing an HTML table and reorganising it to make it more accessible, abstracting out complex sections into a series of menus.

For example, given a table such as this:

it can produce navigable menus such as this:

Even quite complex tables, with row and column spans, which would otherwise be quite difficult to interpret if read row-by-row by a screenreader, is made much more accessible.

Capti web player

Another technology I saw demonstrated was the Capti web player.

Tools such as instapaper and read it later have showed that we can take most web pages and extract the body text for the article on the page.

This capability should be ideal for visually impaired users, but the tools themselves are still quite difficult to use and integrate poorly with assistive technologies. Someone described them as obviously “designed by sighted people for sighted people”.

Capti combines this capability with an accessible media player making it easy to navigate through an article, move through a list of articles, and so on. To a sighted user like me, it looked like they’ve mashed together instapaper with an audiobook-type media player. I often listen to podcasts while I go running, and am a heavy user of pocket and Safari’s reading list. So this looks ideal for me.

Multiple simultaneous audio streams

Finally, one fascinating project looked at how to make it quicker to scan large amounts of content with a screenreader to find a specific piece of information. I’ve written before that relying on a screenreader (which creates a sequential audio representation of the information on the page, starting at the beginning and going through the contents) can be tremendously time-consuming, and that it results in visually impaired users taking considerably more time to find information on the web.

This project investigated whether this could be improved by using multiple simultaneous sound sources.

It sounds mad, but they’re starting from observations such as the cocktail party effect – that in a noisy room with several conversations going on, we’re able to pick out a specific conversation that we want to listen for. Or that a student not paying attention in a lecture will hear if a lecturer says something like “this will be on the exam”.

They’re looking at a variety of approaches, such as separating the channels directionally, so one audio stream will sound like it’s coming from the left, while another is in front. Or having different voices, such as different genders, for the different streams. It’s an intriguing idea, and I’d love to see if it could be useful.

Web technologies I saw at W4A


Last month I went to the International World Wide Web Conference for w4a. I saw a lot of cool web technologies and accessibility projects while I was there, so thought I would share links to some of the more interesting bits.

There are too many to put in a single post, so I’ll write a few posts to cover them all.


Subtitles and transcripts came up a few times. One study presented looked at online video, comparing single-line subtitle captions overlaid on the video with multi-line off-screen transcripts adjacent to it.

It examined which is more effective from a variety of perspectives, including readability, reader enjoyment, the effect on understanding and so on. In summary, it found that overlaid captions are generally better, although transcripts are better for content which is more technical.

Real-time transcription from a stenographer at W4A

We had subtitles for all the talks and presentations. Impressively, a separate screen projected a live transcription of the speaker. For deaf attendees, it allowed them to follow what the speaker was saying. For talks given in Portuguese, the English subtitles allowed non-Portuguese speakers like me to understand.

They did this by having live stenographers listening to an audio feed from the talks. This is apparently expensive as stenography is a skilled expertise, and it needs to be scheduled in advance. It’s perhaps only practical for larger conferences.

Legion Scribe

This was the motivation for one of the more impressive projects that I saw presented : Legion Scribe, which crowd-sourced real-time captioning so that you wouldn’t need an expert stenographer.

Instead, a real-time audio stream is chopped up into short bits, and divided amongst a number of people using Mechanical Turk. Each worker has to type the short phrase fragment they are given. The fragments overlap, so captions that each worker types can be stitched back together to form captions for the whole original audio stream.

All of this is done quickly enough to make the captions appear more or less in real-time.

Seriously impressive.

And they’re getting reasonable levels of coverage and accuracy. The system has been designed so that workers don’t need to be experts in the domain that they’re transcribing, as they’re only asked to type in a few words at a time not whole passages. With enough people, it works. If they have at least seven workers, it’s approaching the coverage you can get with a professional stenographer.

Assuming that Mechanical Turk can provide a plentiful supply of workers, then this would not only be cheaper than a stenographer, but also let you start captioning at a moments notice, rather than needing to arrange for a stenographer in advance.

Map Reduce in the browser

Speaking of crowd-sourcing, the idea of splitting up a large computing task between a large number of volunteer computers isn’t new. SETI@home is perhaps the best known, while World Community Grid is a recent example from IBM.

But these need users to install custom client software to receive the task, perform it and submit the results.

One project showed how this could be done in web browsers. A large computing task is divided up into map reduce jobs, which are made available through a website. Each web browser that visits the website becomes a map reduce worker, running their task in the background using web workers. As long as the user remains on the site, their browser can continue to contribute to the overall task in the background, without the user having had to install custom client software.

It’s an elegant idea. Not all sites would be well suited to it, but there are plenty of web sites that I keep open all day (e.g. GMail, Remember The Milk, Google Calendar, etc.) so I think the idea has potential.

Migrating browser sessions

An interesting project I saw showed how the state of a browser app could be migrated from one browser to another, potentially a different browser running on a different machine even a different platform.

This is more than just the client-server session, which you could migrate by transferring cookies. They’re transferring the entire state of dynamic AJAX-y pages: what bits are open, enabled, and so on, for any arbitrary web app.

Essentially, they started by wanting to be able to serialize the contents of window, so that it could transferred to another browser where it could be used to restore from.

That wouldn’t be enough. window doesn’t have access to local variables in functions, it wouldn’t have access to most event listeners such as those added with addEventListener, it wouldn’t have access to the contents of some HTML5 tags like canvas, it wouldn’t have access to events scheduled with setTimeout or setInterval, and so on.

Serializing window gets you the current state of the DOM which is a good start, but not sufficient to transfer the state for most web apps.

A prototype system called Imagen shows how this could be done. Looking at how they’ve implemented it, they’ve had to resort to using a proxy server which intercepts JavaScript going to the browser and instruments it with enough additional calls to let them access all of the stuff that wouldn’t normally be in scope. This is enough for them to be able to serialize the entire state of the page.

I can see a lot of uses for this, such as in testing, debugging or service scenarios, as well as just the convenience of being able to resume work in progress as you move between devices.

Inferring constraints on REST API query parameters

Many web services include constraints and dependencies for the query parameters. For example: “this option is always required”, “that parameter is optional”, or “you have to specify at least one of this or that”. For example, the twitter API docs explain how you have to specify a user_id or screen_name when requesting a user timeline.

One project I saw was an attempt to automatically infer these rules and dependencies through a combination of natural language processing to recognise them in API documentation, and automated source code analysis of sample code provided for web services. It combines these into an estimated model of the constraints in the REST APIs, which are then verified by submitting requests to the API.

They demonstrated it on APIs like twitter, flickr,, and amazon, and it was surprisingly effective.


Finally, there was a keynote talk on Wednesday by the founder of duolingo.

Captcha is particularly interesting because it uses a task that people need to do anyway (verify that they’re human) to crowd-source the completion of a task that needs to be done (digitise the text of old books that cannot be read by automated OCR).

Duolingo is similar. It takes a task that people need to do, which is to learn a new language, and uses that effort to translate texts into different languages.

It’s better explained by their demo video.

It’s been around for a little while, but I’d not come across it before. Since getting back from www, I’ve been trying it out. Even Grace has been using it to improve her French and seems to be getting on really well with it.

What else?

There were a lot of other cool projects and technologies that I saw, so I’ll follow this up with another post or two to share some more links.

Everybody Technology

This afternoon I went to Everybody Technology, an event to discuss the need for technology to be inclusive and made in a way that is “so smart, so simple and so powerful it works for everybody”.

A highlight of the afternoon was Stephen Hawking – perhaps one of the best examples of the power of technology to enable someone to reach their potential. He also supported the event by lending his voice to a promotional video which explains the idea better than I can.

“Who is Technology Made For?” (YouTube)

There were several speakers. I won’t do them justice, but I did jot a few notes…

Panel discussion with Rupert Goodwins (ZDNet UK) & Damon Rose (BBC)

They talked of the stigma of using “special” equipment created especially for the blind. There were examples where even when technology or tools exist that can help, people don’t always want to use them. Maybe because they feel embarrassed, or they don’t want to be different, or even that they’re struggling with feeling forced to join a group of people they don’t feel a part of.

They discussed how it was more acceptable to use technologies when they are “standard” and how some felt more comfortable using technology that doesn’t single them out as being different.

Someone noted how people can be embarrassed wearing a hearing aid to help them hear, whilst few people would be embarrassed to wear glasses to help them see. Why are some assistive technologies more culturally acceptable than others?

There was a lot of mention of iDevices and appreciation of assistive technology being delivered as iPhone apps. To everyone else, it’s an iPhone and doesn’t stand out as being different. In addition, the fact that it’s mass-manufactured has meant that an expensive collection of advanced sensors and processing capability can be made affordable. An equivalent device produced purely as an assistive technology would be prohibitively expensive. The iPhone sparked a smartphone revolution that made this technology affordable in a way that it wasn’t before.

There was also discussion about how the app culture removed barriers between potential users and developers. Affordable sensors and technology made widely available, combined with a low-cost delivery mechanism for software innovations, make possible innovations in assistive technology that would have been impossible a few years ago.

Presentation on accessible architecture by Paul Kalkhoven

This looked at parallels between buildings and software. Disability became accepted as important in architecture and you can’t build a new building without considering accessibility. This isn’t yet true of technology.

He talked of the conflicting interests of design and utility. When designing a building, you want it to be unique and different. However, you want it to be obvious. If you want to find a toilet or fire exit, you want to understand the layout immediately. The same applies to technology: we want to make something new and exciting. But there is an expectation that it should be usable without a manual. It needs to be accessible.

One observation I hadn’t really recognised: transport buildings lead the way for accessible architecture, often abiding by a common, albeit unwritten, set of standards.

He challenged us to consider what technologists could learn from their experience.

Presentation on talking TVs by Mark Vasey (Panasonic)

Voice guidance is included as standard in most new Panasonic TVs, offering text-to-speech guidance for complex TV menus.

Perhaps more interesting was how they made it happen. He talked about challenges such as the cost of development, licensing and royalties for a feature they include “for free”. There were challenges in marketing to a minority, without wanting to classify it as a specialist product, and without making sighted users think that they were paying for a feature they didn’t need or want.

Similar to the discussion of the iPhone’s impact, he explained how the only way they could do this and make it affordable was to make it standard. Making a specialist TV with accessibility features for the visually impaired would not have been affordable. Spreading the cost across their entire product line is what made it possible.

“Introduction to Voice Guidance on Panasonic talking TVs” (YouTube)

Presentation on Threedom Phone – Antony Ribot (Ribot)

Antony gave a thought-provoking presentation about their project to make the world’s simplest smartphone.

The smartphone revolution has been great for many, but isn’t suitable for everyone. For some, the controls are too small, or too fiddly, or just too complicated. What if we made a smartphone that had only three buttons? Could we provide the essential functions that people need on a device with three large, easy to press, easy to understand, buttons?

He had an example with him and made a convincing case that there is a need for a device like this, in a market where devices are racing to get more complicated.

Everybody Technology :

A year ago, I wrote about RLSB’s event which brought together a handful of representatives from tech companies, consumer-facing businesses, Universities, and charities for the blind. We talked about a vision of a Conversational Internet.

A year later, and RLSB got together a couple of hundred people to talk about projects that had happened – both by them, such as the Conversational Internet prototype that I presented, and by others such as Panasonic’s collaboration with RNIB to produce Voice Guidance.

They talked about what comes next, establishing a new group to bring together technologists and designers with people who understand disabilities, to make real their vision where everyone is taken into consideration.

If you think this is something you can help with, either as a developer, designer, or someone who understands a disability, then why not join them.

Conversational Internet


We’ve built a prototype to show how we could interact with the Internet using a command-driven approach.

  • A screen reader, but one that uses machine learning and natural language processing, in order to better understand both what the user wants to do, and what the web page says.
  • One that can offer a conversational interface instead of just reading out everything on the page.

It’s a proof-of-concept, but it’s an exciting idea with a lot of potential and we’ve got a demo that shows it in action.

The problem : screen readers today

I’ve written about this before but here is a recap.

Visually impaired people can interact with the web using screen readers. These read out every element on a page.

The user has to make a mental model of the structure of the page as it’s read out, and keep this in their head as they arrow-key around the page.

For example, on a news site’s front page, once the screen reader has read out the page, you have to remember if the story you want is the fifth or sixth story in the list so you can tab the right number of times to get to it.

Imagine an automated telephone menu:
“for blah-blah-blah, press 1, for blather-blather-blather, press 2, for something-or-other, press 3 … for something-else-vague, press 9 …”

Imagine this menu was so long it took 15 minutes or more to read.

Imagine none of the options are an exact match for what you want. But by the time you get to the end, you can’t remember whether the closest match was the third or fourth, or fiftieth option.

The vision : a Conversational Internet

Software could be smarter.

If it understood more about the web page, it could describe it at a higher, task-oriented level. It could read out the relevant bits, instead of everything.

If it understood more about what the user wants to do, the user could just say that, instead of working out the manual navigation steps themselves.

The vision is software that can interpret web pages and offer a conversational interface to web browsing.

Continue reading